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The evolution of the oscillation frequencies of linear autonomous systems with potential and 

dissipative forces depending on a one-dimensional parameter is discussed. Over- and underdamping 

cases are considered. It is shown that as the parameter is changed the oscillation frequencies of a 

dissipative system in many cases behave in the complex plane like frequencies of several decoupled 

oscillators with one degree of freedom. 

AN EXTENSIVE literature [l-9] is devoted to the stability of dissipative systems. Below we 
investigate the evolution of the complete set of system eigenvalues in the entire complex plane 
(and not just the transition of eigenvalues across the imaginary axis, which is responsible for 
the onset or loss of stability) and then consider cases in turn where the potential energy matrix, 
the dissipative forces matrix and the mass matrix are varied. 

1. The equations of motion of a linear mechanical system with dissipative and potential 
forces have the form 

Mq”+ Dq’+ Aq = 0 (1.1) 

where M, A and D are real symmetric square matrices of order n which respectively express 
the kinetic energy, potential energy and dissipative function, and q is the generalized coor- 
dinate vector of dimension n. 

We consider the matrix A in the form 

A=C-pB (1.2) 

where p 3 0 is the load parameter, and C and B are real symmetric matrices. The dependence 
of the form (1.2) on the load parameter characterizes so-called simple systems [4]. It is assumed 
that the matrices M, D, C and B are positive-definite. The condition D > 0 means that system 
(1.1) is purely dissipative. 

We shall investigate the dependence on p of the eigenvalues and the stability of system (1.1). 
After making the substitution q = Xeb we arrive at the generalized eigenvalue problem 

L@,p)X=O, L(X,p)=X’M+ADtC-pB (1.3) 

where X is an eigenvector (EVec) of dimension n and h is its eigenvalue (EVal). 
There are 2n EVals hi and corresponding EVecs Xi associated with problem (1.3). The 
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EVals h are governed by the characteristic equation 

det L (h, p) = 0 (1.4) 

The matrices M, D, C and B a_nd the parameter p are real, so that alongside h and X 
the complex conjugate quantities h and X are also an EVal and EVec, respectively for the 
problem 

L(X,p)X=O (1.5) 

The matrix operators in (1.3) and (1.5) are mutually conjugate. 
If the ki are simple roots of Eq. (1.4) the general solution of the equations of motion (1.1) 

has the form 

q(t) = f;” ffi Xi eXp (Ait) 
i= I W) 

where a, are constants determined from the initial conditions. The expansion (1.6) is also valid 
for roots hi of multiplicity r if the number of linearly independent EVecs Xi corresponding to 
hi is also r. 

Suppose the EVal h in (1.3) corresponds to the EVec X. We multiply the first equality in 
(1.3) scalarly by X and consider the result as a quadratic equation in h Its solutions are equal to 

We normalize the vector X 

(Xx)= 1 (1.9) 

Since the matrices M, D, C and B are positive-definite, we find from (1.8) that 

m>O,d>O,c>O,b>O (1.10) 

If the EVal h is real, the corresponding EVec X is also real, apart from an arbitrary complex 
multiplier. For simplicity we will assume it to be real. 

We consider the discriminant S in (1.7). Suppose h is the EVal corresponding to the EVec X. 
If S < 0, then in view of (l.lO), the roots (1.7) will be complex-conjugate. Hence both roots in 
(1.7) are EVaIs of problem (1.3) with corresponding complex-conjugate EVecs. However, if 
S>O, the roots (1.7) are real, and only one of them is an EVai h of problem (1.3) with 
corresponding EVec X. The second root of (1.7) may be unnecessary. One cannot establish a 
priori the correct sign in front of the root in (1.7). 

According to (1.7) and (l.lO), when p= 0 all the EVals lie in the left complex half-plane 
Reh < 0. System (1.1) is therefore stable. As p increases some of the h may move into the right 
half-plane, which means that stability is lost. 

By doubling the dimensions the generalized EVal problem (1.3) can be reduced to the 
ordinary problem KU = hU with non-symmetric matrix K(p). A generic one-parameter famiiy 
of real matrices is characterized [lo, 111 by simple EVals, and at isolated values of the para- 
meter by double real EVals h, with a Jordan block of order 2. More complicated singularities 
can be avoided by an arbitrarily small prturbation of the family. We consider the coalescence 
of the complex~onjugate pair h and h into one real EVal I,. With the coalescence of the 
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EVals the complex-conjugate EVecs X and x corresponding to h and x also merge together. 
The case when a single EVec X,, corresponds to a double root h, is called a strong interaction 
[12],t characterized by perpendicular approach and separation directions for EVals in the 
complex plane. 

At the point of multiplicity p = p,, the EVals lose differentiability. For small Ap = p - p,, the 
expansions for h have the form [12] 

h=Ao *A, aF+~ww 
A: = @X09 XoYK~r (~o)X,n X0) + (Mx,. X0)1 
L,(Xo)=aL(Ao,po)/ax=2hoMtD 

~@o.Po)Xo =o, L(hOPPO)Xl =-~loo)xo 

(the adjoint vector X1 being defined apart from the summarized i&X,,). 
Because 5, is real, the vectors X,, and X, can also be chosen to be real. The numerator in 

the expression for h: is positive, and generically the denominator does not vanish [12], i.e. the 
strong interaction is not degenerate. 

In the present case the orthogonality condition for strong EVal interaction [12] takes the 
form 

(~,(~o)xo,~o)=o (1.11) 

Using this to express h,, we conclude that h, < 0 in view of the positive definiteness of D 
and M. Hence for dissipative systems strong interaction on the real axis is only possible for 
negative h,. Having reached the real axis, simple EVals h cannot leave it because otherwise 
this would mean the appearance of additional roots x Thus strong interaction is a mechanism 
for ensuring that complex-conjugate EVal pairs reach the axis and the departure of an EVal 
pair from the real axis. At p=p,, in the general solution q(r) of the equations of motion (1.1) 
the secular terms 

al X0 exp(Xot) + a2 (Xor+X,) w40Q 

appear, where a, and a, are constants. This contradicts the assertion [7, pp. 91, 951 that the 
general solution for the dissipative system (1.1) is always of the form (1.6). 

We will compute the derivative of the simple EVal h with reTect to the parameter p. 
Suppose the EVec X corresponds to this EVal. Using the fact that (h, X) is the solution of the 
conjugate problem (1.5), we obtain [13] by the perturbation method 

Wdp = b,l(2X m, + d,) 

b, = (BX, I), m, = (MX, d), d, = (OX, f) 

(1.12) 

(1.13) 

If the vector X is complex, the quantities b,, m, and d, are also in general complex. If the 
vector X is real, then according to (1.8) and (1.13) 6, = b, m, = m, d, = d. Using (1.7) we obtain 
in this case 

dA/dp=*bS-” (1.14) 

Below we analyse the behaviour of the EVals in the complex plane when the parameter p 
varies. 

tSee also: SEIRANYAN A. P., Interaction of eigenvalues. Preprint No. 446, Inst. Probl. Mekh. Akad. Nauk SSSR, 

Moscow, 1990. 
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2. We shall first consider the overdamping case when S > 0 for all non-zero X for some value 
of p< 0. According to (1.7) here all the EVals are real. Moreover, any EVal h is obtained 
from (1.7) either with a plus sign for all EVecs X corresponding to this h, or with a minus sign 
for all EVecs X [3, Theorem 7.41. We call an EVal h of the first type primary, and of the second 
type secondary. Exactly n primary and IZ secondary EVals exist when taking multiplicities into 
account [3, Theorem 7.61, and every primary EVal is greater than every secondary EVal [3, 
Theorem 7.71. In the overdamping case, the matrix L(h, p) (1.3) is semi-simple [3, 121, i.e. to 
every EVal of multiplicity r there correspond r linearly independent EVecs X. 

Remark. The theorems of Sec. 7.6 in [3], referring to the case of overdamping in the oscillatory system 
(l.l), are proved with the additional condition A > 0. However, all these theorems, apart from Theorem 
7.2, remain true for any symmetric matrix A. The key condition turns out to be the positivity of the 

discriminant S = d2 -4ma, where a = (AX, X). 

The inequality S > 0 is satisfied for all non-zero X and for all p B 0 if 

where ruti, P, are the smallest and largest eigenvalues of the matrices D, M and C. Indeed, 
using relations (1.9) and (1.10) we find 

S=d’ -4mc+4pmb>dZ -4mc> 

2 (&in)’ - 4PMmax F$,x > 0 

We call condition (2.1) the sufficient condition for overdamping. From now on in this 
section we shall assume that this condition is satisfied. Then according to (1.7), when p = 0 all 
the EVals h are negative, while for p > 0 they are at least real because S > 0. 

According to (1.10) and (1.14) for primary simple EVals h’ and secondary simple EVals h 
we have 

dh’ldp=bS-“>O, dX”/dp=-bS-“<O (2.2) 

Because the number of primary h’ and secondary h” EVals is equal to n , the picture of EVal 
dependence on p is as follows: when p= 0 all the h are negative, and as the parameter inc- 
reases the n primary h’ increase monotonically while the n secondary h” decrease 
monotonically. In Fig. l(a) the EVals are shown by circles, and the arrows show the direction 
of motion of h asp increases. 

When two EVals collide they pass through one another without leaving the real axis, and to 
a double root h, there correspond two linearly independent EVecs. This type of EVal 
coalescence, characterized by unchanged direction of their motion as they approach and 
separate, is called weak interaction [12] (see also the footnote on p. 603). During the weak 
interaction the EVals remain differentiable at the moment of collision. 

During their rightward motion along the real axis the primary EVals h’ can pass through 
zero. Putting h = 0 in (1.3) we obtain the problem 

FIG.~. 
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CX = pBX (2.3) 

Thus the passage of Y through zero is observed at values of the parameter p equal to the 
EVals pl, pl,. . . , p,, of problem (2.3). Here c = pb and, according to (1.7) and (2.2) 

A’ = 0, dh’/dp = b/d > 0 

The smallest EVal pl = p, of problem (2.3) is critical: when p > p, system (1.1) loses stability 
statically (divergence). When p cpc the motion of system (1.1) is monotonically damped 
because all the h are negative. 

When p > p,, where p, is the largest EVal of problem (2.3), all n primary EVals h’ of the 
original problem (1.3) become positive. When p is increased further all the h’ increase without 
limit, and the n secondary EVals h” decrease without limit (Fig. lb). This agrees with earlier 
results [5]. 

The behaviour of the EVals h is somewhat more complicated in the case of multiply-loaded 
p, i.e. when for some EVal pk of problem (2.3) there correspond g > 1 linearly independent 
EVecs X1, X,, . . . . X,. This means that to the parameter value p = pk there corresponds a g- 
fold EVal h= 0 with EVecs X,, X,, . . . , X, in the original problem. The expansion of a 
multiple zero for small I Ap I, Ap = p - pk, has the form h = &Ap + o(l Ap I), where the quantities 
h, are found from the equation [12] 

In view of the positive definiteness of matrices B and D all g roots h, of this equation are 
positive. Consequently, as p increases beyond pk, all the g primary EVals h’ cross from the 
negative to the positive semi-axis simultaneously. 

Such a case is, for example, realized when the matrices B and C are identical: B = C. Then 
when p = p, = 1 the EVal problem (1.3) acquires the form (??M + hD)X = 0. This implies that n 
negative EVals are governed by the problem DX = -x”MX, while the remaining n EVals are 
zero: h’= 0. With increasing p > 1 these n EVals h’ cross to the positive semi-axis and 
separate. 

3. To understand the EVal evolution in the case of a negative discriminant S we will first 
consider a special case. Suppose D = yM, where y = const > 0. Substituting this expression into 
(1.3) we arrive at the problem of the oscillations of a conservative system 

(-Mu2 +C-pB)X=o (-,2=~2 ++,) (3.1) 

From this we have w* = (c - pb)lm. When p = 0 all n EVals w,? of problem (3.1) are positive. 
We assume that wf c wi G . , . s co,‘. According to Rayleigh’s theorem all the frequencies o2 
decrease as p increases 

dw2/dp = - b/m < 0 

(This formula was obtained by the perturbation method [13] using the fact that o2 and X are 
real in (3.1).) When ‘p=pl, pz, . . . , p,, where the pk are given by (2.3), the EVals w2 pass 
through zero and they all become negative as p increases further. 

We express h in terms of w2 and find the derivative with respect to p 

?,=-7/2/2& dh/dp=*bl(2m&) 

s = r2j4 - w2 = q/4 t @b - c)lm (3.2) 

If S c 0, the plus and minus signs in (3.2) correspond to complex-conjugate EVals a. 
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We shall assume that the constant y satisfies the inequality y2 /4 c (y’. Then when p = 0 we 
have S c 0 for all EVecs X because c/m< wf for any non-zero X. Consequently, according to 
(3.2) all the h are complex at p = 0, with Re;l= -y/2 c 0. This means that all the EVals 3L lie in 
the left complex half-plane along a line parallel to the imaginary axis and displaced from it by 
the distance y/2 (Fig. 2a). Asp increases, the complex-conjugate 3L approach each other along 
this line and merge pairwise (when S=O), and then separate along the real axis in different 
directions (Fig. 2b). The EVals h pass through zero when p = pl, p2, . . . , p,. 

The inequality yz /4 > 0,’ is the strong overdamping condition. This case was considered in 
Sec. 2. If however w: c y2/4 < w,“, then for p = 0 some of the EVals are complex and some are 
negative. According to (3.2), when p increases the complex-conjugate h approach one another 
along the line Re A =-y/2, merge pairwise (when S=O), and then separate in different 
directions along the real axis. As far as the negative h are concerned, half of them (h’) move to 
the right and the other half (h”) to the left along the real axis, and for all h’, h” and all p s 0 

we have iz”c-y/2<;1’. 

4. We will now consider the case of underdamping, when at p = 0 the discriminant Se 0 for 
allX satisfying (1.9). Here, according to (1.7), all the EVals h are complex quantities that are 
close to the frequencies of the corresponding conservative system. Such a situation is found, 
for example, when the inequality 

S=d2 -44mC<01D,,,)*-4~~i"Cl~i" 40 (4.1) 

is satisfied, where p_, & are the largest and smallest eigenvalues of the matrices D, M 
and C. 

To investigate this case we introduce a small damping ED, where E > 0 is a small parameter, 
D is a positive definite matrix, and in accordance with (4.1) pi, - (pzpk))x. Problem (1.3) is 
written in the form 

L*&P, @X=0, L*& p, E)=X%%ftEXDtC-pB 

Assuming h to be a simple EVal, we expand a and X in terms of E 

X=ho+&i+.._: x=x, tex1 t... 

(4.2) 

(4.3) 

Im ?U 

(a) 

0 Re h -72 

FIG.~?. 

@I 
PI<P<Pn 
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Substitutuing (4.3) into (4.2), for the first terms in the expansions we find 

JhOo,P, 0)X0 =o (4.4) 
hi = - H(DXo. Xo)/(Mx,, X0) (4.5) 
L?(AO,P,O)X1 =-)b(2h,M+L9Xo 

(this formula for h, is obtained by the perturbation method [13] using the fact that hZ, and X0 
are real in (4.4)). For &$ one can obtain the limits 

- Ev*,,/2 Q EXI <- EV,in/2 (4.6) 

where v_ > 0 and v,, > 0 are the largest and smallest EVals of the problem DX = vMX. 
The behaviour of the frequencies of the conservative system corresponding to the null 

approximation (4.4) has already been discussed in Section 3. According to (4.5) and (4.6) the 
presence of weak damping shifts all the frequencies of the conservative system by l 4 c 0 in the 
first approximation. 

We expand the derivative dnldp with respect to E. Because ;1 and X are, in general, com- 
plex, we use expression (1.12). Substituting expansion (4.3) into (1.12), to a first approximation 
in E we obtain 

dX/dp = 34 bo (A, mo)-’ + Ek 

k= (homo~l [b, - $4 bo (XomoJ’ (hlmo + 2Aom1 +doP)l 

b. = @3X0. x0), m. = (MXO, X0),& = (0x0. xo) 

bl = @X0, x1), ml = WXO. 21) 

(4.7) 

For small p all the quantities ho are purely imaginary, the h, are real, the X0 can be chosen 
to be real, while the X,, according to (4.5), can be chosen to be purely imaginary. With such a 
choice of X0 and X1 the quantities b,, m, and do are positive, while 4, and m, are purely 
imaginary. The coefficient k is therefore real, while the quantity b,,(2h,mJ’ is purely 
imaginary, and if Imh, > 0, then Im(dh/dp) c 0, and conversely if Imh, c 0, then Im(dhldp) > 0 
(Fig. 3). Thus for purely imaginary h, the derivative dkldp is a complex number whose real 
part is of order E. If however h, is real, then all the quantities in (4.5)-(4.7) are real. 

The evolution of the oscillation frequencies of an underdamped system is illustrated in Fig. 
3. For p=O the complex EVals h lie in the strip (4.6). As p increases they approach one 
another, remaining within the limits of this strip, merge pairwise and then separate along the 
real axis in opposite directions. The transition of an EVal through zero, as before, is only 
governed by the matrix A = C - pB. The system loses stability when p > pl. 

5. We will investigate the evolution of the EVal h as the parameter changes in the case of 
arbitrary damping D > 0. 

When p > p,, where p, is the largest EVal of problem (2.3) the discriminant S is positive for 
all non-zero X. Thus when p >pn, system (l.l), (1.2) becomes strongly overdamped. Accord- 
ing to the results of Section 2, n positive primary EVals h’ move to the right along the real axis 
as p >p,, increases, while n negative secondary EVals h” move along it to the left. 

Suppose that when p= 0 all the h are complex quantities, which according to (1.7) 
is equivalent to the condition that the discriminant S is negative at p=O for all EVecs X. 
We will describe the evolution of the EVal h as p decreases from large positive values p > p, 
to zero. Initially, when the parameter decreases, the n positive primary EVals h’ decrease 
monotonically, while the n negative secondary h” increase monotonically. When p > p, the 
primary EVals meet the secondary ones. When h’ and h” collide, we have S=O, which 
according to (1.7) can be written in the form 2h+d=O. The latter equality is the 
orthogonality condition (l.ll), meaning the strong interaction of h’ and h” [12] (see also 
footnote on p. 603). Thus as p decreases there are n strong pair interactions, as a result of 
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which the real 3L become complex conjugate quantities. The evolution of the EVals is shown in 
Fig. 4, the arrows showing the motion of the h asp increases. 

If, however, not all the h are complex at p = 0, then as p decreases from large positive values 
to zero some of the EVal pairs approach but do not meet and remain on the real axis. For these 
h the discriminant S remains positive. The evolution of EVals in this case begins from the 
position shown in Fig. 4(b) (the EVal configuration for large p corresponds to Fig. 4(c) as 
before). 

6. Above we considered simple systems characterized by a linear dependence of the matrix 
A on the load parameter p [4]. However, the results obtained can also be generalized to the 
non-linear case, so long as the matrix A(p) is, as before, symmetric for all p z= p,,, the matrix 
A&) is positive definite, and the matrix B= B(p)=dAldp is negative definite for p z-p,,, 
where p. is a fixed number. The difference from the case previously considered lies in the total 
number of EVals crossing on to the positive semi-axis as p increases. Their number is given by 
the number of EVals for the problem A(p)X = 0 when p 2 p,,, and may be less than n. The 
critical values pk are found from the equation det A(p) = 0. If det A(y) f 0 for all p 2 po, then 
all the h remain in the left half-plane as p increases. 

7. Consider problem (1.1) when the dissipative force matrix D@) is varied. We will assume 
that D(p,,) > 0 and D1 = dDldp c 0 when p 3 po. We will also assume that the constant matrices 
M and A are positive definite. In the previous notation (1.8) and (1.13) we have 

-d+fi dX 
x=-- -_=__ Wl 

2m ’ dp 2hm, +dc 

S = d2 - 4ma. a = (AX, X), d,, = (Dl X, ,f) 
(7.1) 
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Quantities with the subscript c are complex if X is a complex vector. For real X +O we have 
m,=m>O, d,=d, d,,=d,=(D,X, X)cO inviewof M>O, D,=dDldpcO. 

We shall first consider the case of fairly heavy damping D(p,,) so that when p = p,, we have 
the inequality S > 0 for all non-zero X (the overdamping condition). Since when p = p. we 
have d > 0, from (7.1) and using m > 0, a > 0 it follows that all the EVals h are negative. As all 
the corresponding EVecs X are real, we shall drop the subscript c in the second equality in 
(7.1) and, substituting the first equality in (7.1) into the second, we obtain 

dX/dp = - ?4 d,m-’ (1 T dS-“) (7.2) 

From the inequality S > 0 for all non-zero X it follows that when p = p,, there are n primary 
EVals h’ and n secondary h”, with h”< h’ for all h’ and h”. The plus sign in (7.1) and the 
minus sign in (7.2) correspond to the primary h’, and the minus sign in (7.1) and the plus sign 
in (7.2) correspond to the secondary h”. From (7.2), using dl c 0, m > 0, a > 0, d > 0, S > 0, it 
follows that the derivatives of the primary EVals h’ with respect top are negative, and those of 
the secondary L” are positive. 

Consequently, as p >p,, increases the n EVal pairs move to meet one another, and strong 
interaction occurs when they meet (S = 0), with the EVals becoming complex-conjugate. The 
evolution of one EVal pair is shown in fig. 5. 

When p is increased further the h, h pair may pass into the right half-plane. System (1.1) 
then loses oscillation stability (flutter occurs). At the critical point p = p, we have ;1= fiw and 
d = 0. It is interesting to note that it is not necessary for D(pJX = 0 to hold, and the vector 
dh ldp IPc can have any direction. 

Example. We put 

n = 2, M= diag(3, 1). A = diag(2, 2) 

II 

-(1+2x)9 1+yp 
D=D(p) = 

1 +YP -P I 

where x and y are small. The matrices M and A are positive definite. When x=y =0 the matrix 

Dl = dD/dp (independent of p) is negative definite, while when p = p. = -6 the matrix D(p,) is positive 

definite and the overdamping condition 

is satisfied (cf. (2.1)). These properties of D(p) also hold for small non-zero x and y. 

The characteristic equation for EVals h when p = 0 as the simple purely imaginary root A= i with cor- 
responding EVec 

and d;l/dpI,,=x+yi. Thus 

(and, moreover, the matrix D(0) is non-degenerate), while dUdp can have real and imaginary parts of 
either sign depending on the choice of x and y . (Here we digress from the question of whether p = 0 is the 

smallest value of the parameter p at which the EVals pass through the imaginary axis.) 
This example shows that the behaviour of the system frequencies when the matrix of the dissipative 

forces D varies can be very complicated, and certainly more complicated than when n = 1. 

Figure 5 shows the full possible evolution of any pair of EVals h when the positive definite 
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matrix D @) satisfying the overdamping condition at p = p. becomes negative definite when p 
increases, the absolute values of its eigenvalues increasing without limit. If these conditions are 
not satisfied, the EVal pair undergoes part of the journey presented in Fig. 5. For example, if 
the matrix D(p) remains positive definite for p L p,,, the h do not cross over into the right half- 
plane. 

The set of evolutions of the IZ EVal pairs shown in Fig. 5 determines the evolution of 
the complete collection of EVals of system (1.1) for monotonic (dDldp<O) variation of the 
dissipative forces matrix D (p). 

8. Consider problem (1.1) when the mass matrix M(p) varies. We shall assume that the 
initial mass Mb,,) is fairly small for the overdamping condition (& > 4ma for all non-zero X) 
to be satisfied at p=po. Assuming that ML =dMldp>O for p3po, we will investigate the 
effect of increasing mass on the oscillation frequencies. The constant symmetric matrices D 
and A are assumed to be positive definite. 

The EVals h are computed from the first relation in (7.1) and if h is real, then 

dh di, 1 - 2am db2 -=- 
dp 2m2 

17 c1_4amd-2)1h 
1 
p m~=@GKX) 

In the case of very small mass (rned’ /(4u)) in the leading approximation in m we obtain 

(8.1) 

+_a_al!!! 
d d3 

JX’ a2m1 dh” dml 
dp= 

-- 
d3 ‘dp=7 (8.2) 

Because of the positivity of the quantities m, a, d and m, it again follows from (8.1) and (8.2) 
that as p increases n pairs of negative h’, h” approach one another, coalesce in pairs, and then 
separate at right angles to the real axis (strong interaction). A qualitative picture of the 
evolution of one pair of EVals is shown in Fig. 6. When the mass increases without limit (when 
the smallest eigenvalue of the matrix M increases) all the frequencies tend to zero, and 
ImUReh -_) 04 The general picture of the evolution of the set of EVals is given by the totality 
of separate interacting pairs shown in Fig. 6. 
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FIG. 5. 
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FIG. 6. 
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